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MOMENTS OF THE MINIMUM OF A RANDOM WALK
AND COMPLETE CONVERGENCE

by
Michael Hogan

Department of Statistics
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Abbreviated Title: Moments of Minimum of a Random Walk

Key Words: Random Walk, Renewal Theorem, Complete Convergence,
Strong Law of Large Numbers

Summary: Moments of the Minimum of a Random walk and Complete Convergence.

Let S be a random walk with positive drift. Let S_. = inf {S }. New
n min o4
proofs are given of the following: For p > 1 E|S |p < oo <=>

2
; 0 <= 1 < o ¢
(31<O)) <oy LP{S < 0} < > E([Sll .(Sl<0)) , and some

min
E(lSl[p+ll

related results.




1. Introduction

This paper gives new proofs of the equivalences that are stated as
Theorem 1 in Section 3. Robbins and Hsu [6] first showed ¢ =>e in
1948 with p = 1. They considered the problem in the context of a ran-
{ with E xi = 0, and showed that E Xi < o
1%l
=> g P{ o > €} < @, They called the finiteness of this sum complete con-

dom walk generated by X

vergence. It implies the strong law of large numbers by an application of
the Borel-Cantelli lemma. Erdos [3] proved the reverse direction in 1949

and Baum and Katz [1] added the equivalence of (d) in 1965. Kiefer and
Wolfowitz [5] estiblished the equivalence of (c) and (f) and the (c)<=>(g)

is in Taylor {7]. Independent discovery of both of the results were credited
by the respective authors to unpublished work of Darling, Erdos and Kakutani.
These results are partially restated as Theorems 2 and 3 of section 4.

The new proofs provide an €-free approach to these problems. The elemen-
tary Renewal Theorem, time reversal, and Wald's identities are the primary
tools, and suffice for the case p=2. For larger p, the martingale con-
ditional square function has to be used to replace Wald's identities te shov

the existence of moments in stopped random walks.

2. Notation and Conventions.

Fix the following notation and conventions. Xi is an 1i.i.d. se-
i
quence with u = EX, > 0; X = =X 1o} So = 0, s, = jil Xy for 1 >(o);
S = inf{S,; 1 > 0}; T, 1is the first strict ascending ladder epoch, T J is
min i + +

the jth strict ascending ladder epoch: T_ 1is the first weak descending ladder
epoch, or + ® if none exists, T-(j) 18 the jth weak descending ladder

epoch, or + « 1if none exists (see Feller {4], Sec. 12.1 for definition);




o <o

L) = I 1 <oy MO = I 1o

n=1 {inf s n=1 n

i>n

j io}’

i.e. L(0) 1is the last time the process is non-positive, and N(0) is the
number of times the process is non-positive; inf{ } = o; 7T(a) =

inf{n > 0: S > a}; t(a) = inf{n > O: S, < a}; K and C will be posi-
tive constants, not necessarily the same from line to line; E{Y;A} =

E(YlA); w = (Xl,XZ,...), w = (X ve)e E* denotes expectation of

a atl, xa+2"

the random walk started from x; E = E°.

3. Statement and Proof of Theorem:

Theorem 1: For p > 2 the following are equivalent:

a). E(1,”) <

b). E(TP Y 1< <o
). E(EHP) <o

d). ELEP) <o

e). EMOM' ™) <«

£). E(|s_, [Pl <o

g). E(]ST_|p_l; T_< o) < »,

min

Four lemmas will be given first, then the proof proceeds as follows:
a<=>b; a<=>c¢c;d=>b;aand b=>d;d =>e; e=g;g:->f; f=>c¢;

f => c.

Lemma 1: TIf E(T+p) < o then E(t(—x)p-l; t(-x) < ©) <K ¥ x > 0.
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Proof: By time-reversal one has, ¥ K > 0,

P{t(X) = n} = P{s; > -K,...,S _

1 > =K, sn < =K}

1

> <K, §_ < -K}

=P{S_-S_, >-K...,5-8

n-1

| A

P{s. < 0,...,8 < 0}

P{‘r+ > n}.

Multiply the first and Jast lines by np“1 and summing implies the result,

= P
with K Cp E(r+ ).

Lemma 2: If E(T,F) <= then E(T(MP)< Ky + 1P ¥ y>o.

Proof: First notice that E(T,”) < => E(T(»)?) <= ,¥y >0, For

if P{X < 0} > 0 one conditions on the random walk at time 1 to show
E(t(e)p) <o, He>0, from which E(T(y)p) < o ¥y follows as below,
if P{X < 0} = 0 the one-sided hitting problem is the same as a :wo-sided
problem, for which Stein's Lemma (cf Feller [S], Sec. 18.2) says 1(y)

has moments of all orders. To proceed with the proof, observe that for

K > 0 an integer

w+

T((K—l)y)) and the

T(Ky) < t(y) + T(y)(wT(;)) + .00+ T(y)(

T(y)(ai+

$ '
T(jy)) are f.i.d. Hence by Minkowski's Inequality.

E(tky)®) < kP E(t1(y»)P)

and so




E(T(y)P) < E [y} + DP

'v<
m
A

< E(t()P)([y] + 1P

EP) vy + 1P

I

Lemma 3: For x > Q0 let

x - TSy X t(-x) < ®

0 > t(_x) = o,

Then ¥ p > 1 E((x")P) < o => E(R-z-l; t(ox) < @) < K, where K is

independent of X.

Proof: This is essentially the same as Theorem 2.4 in Woodroofe [8].
oo
P{R_ > y} = ¥ P{t(mx) > n, S < -x - y}.

n=1 n
[o o]

< I P{s > -x, S_ < -x -y}

- n=1 n-1 — n
[s ] N 1

= £ [ F(x-y=-s)F (n-1) 4y
n=1 X

[T FG-x =y - 8)U (ds)

| A

C E F(-x—y;k)
k>-x

<C I F(-y -~ k)
k>0

| A

¢ /7 F(2)dz.




*
where F ] is the j-fold convolution of F with itself, and U 1is the

L *m *m
( renewal measure: U(x)-U(y) = I [F (x) - F (y)]. Multiplying the first
m=0

p-2 and integrating gives the stated result.

and last statements by y

k! Lemma 4: E(lsT_lp; T- < @) < @ => E(X)P) <o v p > 0.

Proof: The statement is invariant under change of scale, so if X is
: lattice one may assume that the span of X 1is less than 1. It may also
be assumed that X 1is not bounded below, for otherwise the statement of

the lemma is trivial. In this case, with

Rx - ST(x) T X

since the asymptotic distribution of Rx has positive mass on [0,1) (see

Woodroofe [8], Sec. 2.2),

0 <r = inf P{Rx < 1}.
xzp

By time-reversal, for n > 0
P{s__ e (-n -1, -n), 1~ <}

-+

I P{s
=1t

\'

0,...,S > 0, 5, € (-n - 1, -n)}

j-1

[}

z P{s S, ye00,sS

A J 1 S. € (-n - 1, -n)}.

37 5510 5

A\

t P{-n

v

1>8,..,n =1 >5, ), S, e (-1, -n)}
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And

P{R_n_l <1} > P{R_n__l <1, X, <-n - 1}
= [° PR <1} P{X] ¢ dx}
- In+l x-n-1 1 & oxJ.

| v

r P{x; >n+ 1},

Thus
P{s,_e (-n -1, -m}>r P{X >n+1}.

Multiplying by nP  and summing gives the statement of the lemma.

Proof of the Theorem.

a=>5b E(TE) < o => E(Tg_l; T < ®) < o, By a standard time

reversal argument (See Feller [4], Sec. 12.2),

Pir, >n} = 1 Pt - a}

i=1
In particular
pit, > n} > P{t_ = n}.
Multiplying by np—l and summing gives the result.

b => a E(IE—1° T < ®) < o0 => E(TZ) < o, Note that conditioned

’

[0) o D)

on

W e !

Yi’ where the Yi are i.i.d. with

i=1
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p{yi <y}=Plr_<y| 1_<«}. Thus I P71 P{rfj) =n} =
m=1

E(IT.(.j)lp-l; Tfj) <@ 2 37 E(T‘_"1 [ T_ <) P{1_< o}

So

o« 0
m=1 j=1 -

<k (P 1< ).

a =>_c¢ E(TE) < o => E((X—)p) < o,

By the Elementary Renewal Theorem (Chung [9], Thm. 5.5.2), 3¢, K > 0 such
that E(T(x)) > cx ¥ x > K. So E(T(®P) > (E@e)N? > P xP v x >«

Conditioning on the first step of the random walk gives

P
® > E(T9)

I v

I5 E(t(x))P P{X™ € ax}.

f; cP xP p{x” € dx}.

|v

The last line implies E((X-)p) < oo,

c => a E((x')P) < o => E(TE) < o, It suffices to assume Xi <c for somi
- =2 4 - X

c > 0; for, Xi can be truncated above to give Xi with E Xi >0,

and Ty for the random walk generated by the ii is larger than that for

the Xi random walk, so if the claim can be proven for the ii process

it follows for the X1 process,

In this case it may be assumed that the X1 have at least 2 moments.

Wald's identity for the 2nd moment gives
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E(S. - u 'r+)2 = (Var X)) E(1))

Ty

But S_ < ¢ so E Si <o =>E Ti <, Let q = sup{p > 2:
+ +

<o, Let §<gq < 24.

£

E(E)Y) < o => E(T+q) <o¥2<q<p} Suppose

1 q
3 Then E(T+ /2) < o, Therefore, by Burkholder and Gundy [2], Theorem 5.3.

q
E | S, ~HT, 19 <
+
- o a
] from which E T+ < © follows as above. This is a contradiction.
4
{ - p-1 - p-1
k d => b E(L(0) ) < o => E(T_ 3 T_ < ®) < o,
"

L Proof: L(0) > T_l{T < o},

=>d E(TE) < ®, and E(T_p-l; T_ < ®) < o => ELOPT) < o,

!.p a and b
 J

The idea of the proof is to express L(0) as a sum of successive trips

above and below the origin, until the random walk stays permanently above

®
' 0. Finding the random walk above 0 one must know the p-lSt moment of the
{ expected time to get back below O must be bounded no matter where the
4
>. process is, provided 1t ever does. This is the content of Lemma 1. Having
hit below O one must know that the p-lst moment of the expected time
to reach 0 1is finite. According to Lemma 2 this quantity is bounded by
. K f: (ly| + l)p_1 F(dy), where F denotes the hitting place of the non-
? positive axis.
? 8
o
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Lemma 3 provides a uniform bound on the p-lSt moments of these distri-
butions F. The proof is then finished by observing that, because of the

positive drift, this cycling behavior can only be repeated a few times.

Proof: Set p = (1-q) = P{T_ = »}, Define

- . <
Tl = inf{K > 1: SK >0 and g m < K with Sm <0,

AR

and for n > 1

[2hahilhd e

Bt

= = > +...+ <m< K with
Tn inf{R > T1 +...+ Tn—l SK 0 and g Tl Tn~l
"4
3 - <
Sm 5_0} (Tl +...+ Tn—l)’ Tn—l %
[
> = oo’ Tn_l = o0
l [o0]
[3.1] L P < 5 T, w1 P e 1 :
m=1 n n<ew, ~n+1=w}
E(IT, +...+1 |P71; 1 T
1 n ’ "n<eo’ "ntl=w
p-1
< +... 3
<E(T 4T P )
p-1 p-1 p-1,
<n E(Tl +.. .+ Tn s T < o)
E(Tz_l; Tn < w) is estimated seperately when i=n, and i<n, First
f
the case i<n.
[
L p-1 - p-1, <
‘ BT 5 Tycwd = BEAy S T o<l& g D
} 1 n-1
p-1 -
= 3 < .
E(Ty 5 T _; <= P{T__ m!aTl 4T -1}, T <
< q E(P7Y; T < ) (*)
( - i ’ "n-1
and




_1.

T < @)

P
E(Tn

Consider for x > O

-1
EX{TE ;T < )

The first term is <

it follows that

ST -1
EX(E T (t(0)P

E(E

E(E(Tz-l; T <o | & ))

S
T, 4.0+ T
1 n—1(T‘1) Lop cwy T < @),

1 n-1l

E((r_+ T(-5. )@ NP 1<)

-1, -1 X ST— -1
PTHEN(PTT t_< @) + ECE TP 1 <o),

| A

K by Lemma 1. For the an, using lemmas 2 and 3

T_ < )

= IO Ey(T(O)p-l) PX{ST_ £ dy, T_< o}

-0

< [0y 1Pt PN

-0

p-1, <
E(Tn i Ty )

set a = E(TPL +...
n 1

e dy, T_ < o},

< K P{T < o}
- n

-1
<k q"h ().

+ 1Pl T <)
n n

Summing (*) from 1 to n-1 and adding (#%*) gives

+ K qn-l‘

10




Therefore, a is geometrically decreasing, and I a <. A look

at 3.1 shows that I a < ®=>E L(O)pm1 < o,
— p-1 - p-1
d =>e E(L(0) ) < = => E(N(0) ) <
Proof: L(0) > N(O).
e=>g ENOPD <o E(ls [P 1 <o)<
—___g. T 1 -

Proof: The amount of time spent getting back above ¢ after having hit

+
below ¢ for the first time is T(O)(wT_) 1{1_<®}' So

p-1 +
(1 + N(O)) ->_ T(O) ((DT-) 1{T_ < 00}.

\

and © > E((L + NO)P™) > E(PH0) ! )5 1 < )

EE(PTH0) (! ); 1 <] F )
S - —
T_ -1 -1
E(E (1P 1< =) = E(|s_ P71 <@ <o

as in the last part of a and b => 4.

g => f E(]ST_!P-l; T <®) <o=> E(ISmin[p-1 < )
Proof: Smin can be written as Zn’ where Zi is a random walk with

P{Z1 <y} = P{ST <y}t <}, PIM=n} = P{T__<<4n P{t_ = =}, n=0,

1, ..., and M 1is independent of the Z This can be seen intuitively

i
by considering the decreasing ladder process, or a quick proof can be
based on a comparison of the characteristic functions given in Feller

[4], Chapt. 18, E(]ST ]p-l; T_< ®) < o => E(llep_l) < ®, so

p-1, _ p-1
E(lsminl ) =12 E(IZJ ) P{M = n}
n
< E(lzllp‘l) £ oP! piM = n)
n
< oo
11




z
| @
_ o )
: f =>g E(Isminlp )< © => E{IST-IP 1; T_< o} <o
v
r(' Proof: [S; [1rr ¢ w} S ISyl
£ => e E(|Smin|p°1) < ® => E(N(o)p'l) < @,

Proof: Since E(|S . [Ph<w, then E(ls,_[P 1<} <= . From

ptl

5 lemma 4 E((X) ) < ®» go the result follows from ¢ => d => e.

f =>¢c E(]Sminlp-1)< o => E((X)P) <«

Proof: Follows from f => g and Lemma 4.

4. Remarks and Applications.

Let Yi be a i.i,d. sequence of random variables with EYi = 0.

Let § =Y, +...+ Y
n 1 n

L(g) =

[
u ™M 8

Lsup LETL > €},

jZn

8

N(e) = ¥ 1,48
nel {l_nn_l > €}

Theorem 2: For p > 2

(1) E(N() P <@ <= B([Y]P) < w

(2) E(L(e)p-1)< w <=> E(|Y|P) < =

w s
;| -
(3) L Plsup Fd! > ¢} v nP P w o> g [Y]P < =
n=1 j>n
 p¢ Ial 2
4y P{ "= >¢}<=>E |y|
n=1

12




— — ——— ~—— ——— iv']

Remarks: The "only if" part of (4), for p=1 1is due to Robbins and Hsu
[6], (4) with p=1 is due to Erdos {31, (3) was first proved by Baum

and Katz and can be found in [1].

Proof: (1) and (2) follow from the equivalence of c,d, and e by

considering the random walks Sn + ne. (3) 1is the same as (2) plus the
S,
observation that P{L(e) > n} = P{sup l—JJ > ¢}, and (4) follows similarly
i2n
from (1).

Let Xi be i.i.d. random variables with E Xi =ue (0,%),

Theorem 3: For p > 1 the following are equivalent:

1 B <o
) E(]s_ [P5 1 <) <
(3) E()s 1P <.

Remark: The equivalence of (2) and (3) for p=1 1is credited by

Taylor [7}, to unpublished work of Darling, Erdos and Kakutani, and

Taylor adds a proof of the equivalence of (1). Kiefer and Wolfowitz [5]
also credit the equivalence of (1) and (3) to unpublished results of
Darling, Erdos and Kalutani; and they give their own proof. The moments of

the minimum are of interest because the minimum has the distribution of the

stationary distribution of a type of queueing proeess. See [4] p. 198.

Proof: This is the equivalence above, however, the tortuous path via

the implications of Theorem 1 can be replaced by lemma 4.

I would like to thank Professor Siegmund for help received on this

problem. In particular he showed me the time-reversal proof of b => a.
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